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Abstract. We discuss the f (0)  spectrum of non-hyperbolic attractors of the HCnon type. 
We elucidate the origin of the ‘phase transition’ found in a previous paper, and give a 
lower bound to the spectrum in the non-hyperbolic ‘phase’ where Kaplan-Yorke-type 
formulae no  longer hold. Our results disagree with other recent attempts. Numerical 
simulations for the HCnon map agree with analytical estimates. 

Very recently, much progress has been done towards the understanding of the geometric 
structure of strange attractors. In the case of hyperbolic systems, i.e. of sets whose 
tangent space is a continuous invariant decomposition of the stable and unstable 
eigenspaces, the generalised dimensions D( q )  (Renyi 1970, Grassberger 1983, Hent- 
schel and Procaccia 1983) have been shown to be related (Grassberger 1984, Badii 
and Politi 1987) to the effective (finite-time) Lyapunov exponents (Fujisaka 1983, 
Grassberger and Procaccia 1983, Benzi et a1 1985). The latter also yield (Grassberger 
et al 1987, Mori et a1 1987a, b) the whole spectrum f ( a )  (Parisi (appendix to Frisch 
(1984)), Halsey et a1 1986) of pointwise dimensions a. These results have been derived 
under the assumption that a hyperbolic attractor is, locally, a Cartesian product of 
several continua and one Cantor set. On the other hand, very little is known about 
the more general class of non-hyperbolic systems for which a thermodynamic formalism 
has not yet been developed. However, very recently, a first heuristic attempt to extend 
the statistical mechanics approach to such systems has led to the conjecture (Grassber- 
ger et a1 1987) that the above relations still hold for a larger than some critical value 
ac. For smaller a values, the effect of homoclinic tangencies prevails. The factorisation 
hypothesis (continua x Cantor set) breaks down there and must be substituted by more 
refined considerations. Here, we present such an approach, which allows us to analyse 
the low-dimension tail of the spectrum f ( a ) ,  by studying the natural measure around 
the homoclinic tangencies. For two-dimensional maps in the high-dissipation limit, 
we recover the well known results for the logistic map (triangular f ( a )  spectrum) 
(Grassberger et a1 1987). We first recall the definitions of generalised (Renyi) 
dimensions D( q )  and thef( a) spectrum. The former can be defined through (Grassber- 
ger 1985, Halsey et a1 1986) 
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where the attractor has been covered by compact sets (‘boxes’) of size containing 
a mass p i .  The pointwise dimension a ( x )  is then introduced via the scaling relation 
pi  - E ; ( = )  between mass and size, for the box centred at point x. Finally, the dimension 
spectrumf(a) is defined as the Legendre transform of r (q ) :  

f ( a ) =  w ( q )  - r ( q )  with a = dr(q)/dq. (2) 

According to Parisi (appendix to Frisch (1984)), f ( a )  can be interpreted as the 
Hausdod dimension of the set of points x with pointwise dimension a ( x )  = a. For 
hyperbolic repellers in one dimension, this was shown rigorously by Bohr and Rand 
(1987) and Collet e? a1 (1987). We shall see in the following that this is no longer 
obvious for non-hyperbolic systems. 

It has been shown that a relation between D( q )  and effective Lyapunov exponents 
exists for hyperbolic systems (Grassberger 1984, Badii and Politi 1987). For simplicity, 
we recall only the results for 2~ maps with constant Jacobian J = exp(-B). By 
indicating the partial dimensions along the expanding and contracting directions with 
d , ( q )  = 1 and d , ( q ) ,  respectively, the global dimension is D ( q )  = 1 + d 2 ( q )  and the 
following generalised volume conservation law (Grassberger 1984, Badii and Politi 
1987) holds: 

lim i-m (exp[(l- q ) [ A , ( t ,  X I +  d2(q)A2(4 x)lt l )  = 1 (3) 

where A l ( ? ,  x), A2(?,  x) are the effective Lyapunov exponents computed over a portion 
of orbit of time length t, starting from point x. By using A ,  + A 2  = -B, and defining 
the generalised Lyapunov exponent A,( q )  as (Fujisaka 1983, Grassberger and Procaccia 
1983, Benzi et a1 1985) 

one finds 

In non-hyperbolic systems of the HCnon type, the value of A1(q) depends, for q > 2, 
on details of the definition, such as whether the averaging in (4) is done over open 
trajectories (which allow for negative A, values as well), or over periodic ones only 
(obviously yielding positive AI values only). These differences are related to non- 
analytic behaviour of D ( q )  at the value q = qc which renders the argument of A, in 
(5) equal to 2 (Grassberger et a1 1987): 

[2 - D ( q c ) I ( q c  - 1 )  = 1 .  ( 6 )  

In such a point, the derivative of D ( q )  is discontinuous, in analogy to a first-order 
phase transition: in fact, &= lim,,,=d.r(q)/dq < ac= lim,,,cd.r(q)/dq, and f ( a )  is 
linear for CYcda4ac, with slope df (a ) /da  = q c .  For the usual parameters of the 
HCnon map ( a  = 1.4, b = 0.3), one finds numerically A,(2) = 0.29 and, consequently, 
qc=2.24 and D(qc)  = 1.19 (from ( 5 )  and (6)). The shape of f (a )  is given in figure 1.  
For a > a c , f ( a )  is obtained directly from ( 5 ) .  The simplest way to complete the curve 
for a < ac, consistent with the above results, would be to extrapolate it down to f ( a )  = 0 
with a straight line of slope qc: this yields a lower bound a,& to the minimum dimension 
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Figure 1. f ( n )  spectrum of the Henon attractor. The broken line gives an upper bound 
to the low-dimension tail. The isolated point (m) represents an upper bound to the minimum 
a value and a lower bound to f ( n ) .  

amin and an upper bound  CY) to the spectrum, defined as 

The aim of the present letter is to investigate whether this bound is saturated. In 
particular, we determine lower and upper bounds to both f( a) and amin by following 
a direct approach. 

The main point is to recognise that the regions of the attractor which contribute 
most to the low-dimension tail of f ( a )  are the neighbourhoods of the homoclinic 
tangencies (figure 2). Notice that the image of a tangency point is again a tangency, 

I 

Figure 2. Sketch of the structure of the stable and unstable manifolds near a prominent 
homoclinic tangency ( a )  and around its nth iterate ( b ) .  
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characterised by a larger curvature of the unstable manifold (and vice versa for the 
pre-images). Therefore, given a family of tangencies { ~ , I x , + ~  = F ( x , ) } ,  we call 'promi- 
nent' tangency the point xo in which the sum of the curvatures of stable and unstable 
manifold is minimal. We then make the following assumption. 

Conjecture. The attractor in the neighbourhood of the prominent tangencies is the 
product of a continuum by a Cantor set. 

Hence, near any image x,( n > 0) of the tangency point x,, the attractor can be thought 
of as a collection of shifted parabolas (see figure 2), with a continuous mass distribution 
along the parabolas themselves. The latter ones expand as exp[A,(n, x o ) n ]  along the 
local y axis and contract according to h,(n, xo) along the local x axis. Therefore, the 
unstable manifold near x, is approximately described by 

Let us now consider a covering where the box closest to x, is a square of size E in the 
position indicated in figure 2. The asymptotic weight p (  n, E )  of this box, for n + 0;) 

and E + O ,  depends on whether E is larger or smaller than R,, where R,- 
exp[(2Az-A,)n] is the radius of curvature at x,. With the help of the conjecture, and 
calling a' the dimension measured in a box of axes 

8, - E exp( -nA2) 8, - E exp(-nA,) 

around x,, we obtain 
( 9 )  

E ~ '  exp{-[( a'- l)Al + A 2 ] n }  for E <  R, (loa) 
-: exp[-(a' - $ ) A l n ]  for E > R,. (lob) 

p ( n ,  E )  = { E a '  

Here, (loa) is simply given by S , S ~ ' - " ,  since almost every parabola, intersecting the 
box along the vertical edges, yields a contribution 8, to the mass. For E > R, instead, 
the intersections occur mostly on the upper edge and the average width becomes of 
the order of 4 rather than a,, thus yielding (lob). As shown by Grassberger et a1 
(1987), a' depends on the effective Lyapunov exponents during the iterations leading 
to xo. More precisely, it is given by the Kaplan-Yorke-type equation a'= 1 - A { / A k ,  
where A ;  = A,(m, .I-,,,)> 0 is the Lyapunov exponent measuring the expansion along 
m pre-images of the x axis and A: < 0 measures the contraction along the pre-images 
of the y axis (notice that expanding and contracting directions are interchanged when 
a trajectory passes through a primary tangency). The number m of pre-images is such 
that the length of the box was of the order of unity at time -m, i.e. 

E exp(-nA,-mA;)- 1.  ( 1 1 )  
Inserting (9) into ( l ) ,  with q > 1,  we notice that the influence of the nth image of a 
prominent tangency in the sum (1 )  is different, in the asymptotic limit, for n > n( E )  

or n < n ( ~ ) ,  with 

In E 
n ( E ) = - .  

2AZ-A1 

The dominant contribution is found to be given by the box at the n(s)th image 
(corresponding just to the case E = R,, shown in figure 2), and scales as 

(13) p [ n ( E ) ,  E ] 9 / E T ( 9 )  - E 4 ( 2 a ' - l ) Q ~ / ( 1 + Q ~ ) - T ( 9 )  
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where we have introduced 

aL= 1 - A , / A Z  (14) 

as the effective ‘Lyapunov’ dimension of point x,. Notice that aL depends on the orbit 
leading from x, to x, and does not coincide with a’, which depends on the iterations 
leading from x-, to x,. From ( 1 1 )  and (12), we obtain 

Taking then the limit q + a, in (13), we see that each family {x,ln > 0) of tangencies 
yields a contribution E ~ ~ - ~ ( ~ )  , with 

(2a’-  l ) a ,  
a =  3 D(o0). 

l + a L  

Notice that, although a can also be written as 

lnP[n(E), E l  a = lim 
E + O  I n &  

it cannot be considered as a pointwise dimension, since the E boxes used in this limit 
are not centred around one single point. As a consequence, the corresponding f ( a )  
cannot be interpreted as the Hausdodl dimension of any set of points. For a given E, 

the set of heaviest boxes forms a ‘volatile fractal’ in the terminology of Herrmann and 
Stanley (1984). Also, a cannot be written as a sum of two partial dimensions, as is 
always the case for hyperbolic attractors. In the high-dissipation limit (a’, aL+ l ) ,  
(16) yields a =f, in agreement with the well known results for the logistic map 
(Grassberger e? a1 1987, Ott e? a1 1984). (There, this is indeed the pointwise dimension 
of a set of points, namely of the images of the critical point.) On the other hand, for 
conservative maps, where a’= aL = 2, we obtain a = 2, as it should. 

In the intermediate cases, precise estimates require an assumption about the joint 
fluctuations of a’ and aL. In order to avoid such a difficulty, we limit ourselves to 
derive bounds on amin. By substituting in (16) the average (most probable) value for 
both a’ and aL, an upper bound to amin is obtained. For the usual parameters a = 1.4 
and b = 0.3, the result is 

where a(1) indicates the information dimension (2). In order to test this, and to obtain 
eventually a more precise numerical estimate, we computed amin by using a modified 
correlation method. We first located 100 prominent tangency points to an accuracy 
of better than lo-” by following the unstable manifold of the fixed point and looking 
for points on it, where the next thirteen iterations led to a contraction of the unstable 
tangency vector by a factor S Then, we counted the number of points of a random 
trajectory (of length 2.6 x lo*) which fell closer than E to any of the first iterates of 
these prominent tangencies. This was made feasible by using a mesh in a way similar 
to that described by Theiler (1987). The result is shown on a log-log scale in figure 
3. The bold curve represents the maximal number of points in an E neighbourhood 
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Figure 3. Correlation exponent near 100 prominent homoclinic tangencies and their images. 
Bold curve: maximal number of points in an E neighbourhood of any image of any primary 
tangency. The slope yields amin. Thin curves: average numbers of points in the E neighbour- 
hood of the nth images of primary tangencies ( O S  n a 6 ) .  

of any of the 100 tangencies. From its slope, we estimate 

ami,, - 0.76. (19) 

This value is in reasonable agreement with the box-counting estimate of Grassberger 
er a1 (1987). Since it is larger than aGin (given by (7)), we conclude that f ( a )  is not 
a straight line all the way down to amin. The thin curves show, for each n E [0,6], the 
average number of points in neighbourhoods of the nth iterates of the prominent 
tangencies. From these lines, we see that our basic results are indeed correct: for each 
E there is a different iteration number n ( ~ )  which contributes maximally. For n < ?I(&), 
the slopes of all curves are roughly equal to the global dimension D = 1.25-1.3. For 
n > n(~), we observe another common slope smaller than amin, as predicted in (9). 

Let us now compare our results with two other recent attempts to compute amin 
(Gunaratne and Procaccia 1987, Jensen 1987). Jensen counted points which fall into 
E neighbourhoods of the seventh iterate of the prominent tangency nearest to the fixed 
point (‘nearest’ along the unstable manifold). This indeed gives a rough estimate of 
amin, except for two sources of errors: firstly, by taking only one n value, with n > n ( ~ )  
for all E, one underestimates amin. Secondly, by taking only the tangency closest to 
the fixed point, one overestimates amin since the pointwise dimension a’ is there equal 
to that at the fixed point (Grebogi er a1 1987), and this is larger than the average. 
Numerically, these errors cancel exactly and Jensen’s numerical result agrees with ours. 
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In contrast to this, the results of Gunaratne and Procaccia (1987) seem suspicious 
since they do not guarantee the correct amin in the two limits of conservative and of 
strongly dissipative systems. 

The evaluation of f ( a )  for a < a, is performed by actually evaluating the sum in 
( l ) ,  or by counting the number N(E, a) of boxes with effective local dimension a. 
Again, we consider only the dominant boxes at the nth iterates of prominent tangencies, 
with n = n ( e )  (equation (12)). The nth pre-images of these form a covering of the 
prominent tangencies with rectangles of height 6, = E exp(-A,n). Since the latter lie 
on a curve of length of order 1 transverse to the unstable manifold, the number of 
rectangles needed for the covering scales as 6i-f(a’)  and we obtain 

N(E,  a)- E - ~ ( ~ ) ~ [ E  e~p( -A~n) ] ’ -~ (”” .  (20) 

The final evaluation of f ( a )  is again not easy due to fluctuations in the Lyapunov 
exponents. A lower bound to f ( a )  is obtained by recalling (12) and inserting average 
values for both a’ and aL (with f ( a ’ )  = a(1)):  

Numerically, this gives 0.29 for the standard parameter values. 
A further improvement to the lower bound (21) requires a conjecture on the joint 

distribution of a’ and aL on the set of boxes centred around the prominent tangencies. 
This is a very delicate question and we have not found any argument to justify a 
particular choice. 

In conclusion, the approach described in the present letter has allowed to clarify 
the mechanism leading, in non-hyperbolic systems, to the creation of heavy boxes 
(small dimensions). 
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